Summenbildung

Wir haben bis jetzt schon eine grundlegende Idee der Flächenbestimmung unter den Graphen von Funktionen kennengelernt. Jedoch ergibt dieses Verfahren bis jetzt nur einen Näherungswert für den orientierten Flächeninhalt.

Im Folgenden wird das Verfahren verbessert, der Flächeninhalt exakt bestimmt sowie das theoretische und praktische Fundament eines der in der gesamten Mathematik wichtigsten Verfahren verfestigt werden!
Dazu wird immer wieder auf den Funktionsumfang der freien Software Geogebra zurückgegriffen werden.


    Aufgabe 3

Mit Hilfe des folgenden interaktiven Java-Applets basierend auf Geogebra sollst Du einige wichtige Zusammenhänge nachvollziehen.
Gezeigt ist der Graph der Funktion f(x) = \frac{1}{100} \cdot x^3 + \frac{1}{50} \cdot x^2 - \frac{7}{10} \cdot x + 5 mit den Rechteckflächen der Ober- und Untersumme in einem Intervall [a;b].

  1. Verschiebe abwechselnd die Intervallgrenzen a und b (blaue Punkte auf der x-Achse) mit der Maus nach rechts und links. Beschreibe wie die Rechteckflächen der Ober- und Untersumme auf die Verschiebung der Intervallgrenzen reagieren. Was geschieht mit den Werten O, U und der Differenz?
  2. Variiere jetzt die Anzahl n der Rechtecke durch Betätigung des Schiebereglers. Was passiert nun mit den Werten O, U und der Differenz? Wie und warum wird durch die Variation von n die Fläche unter der Kurve durch die Rechteckflächen besser oder schlechter beschrieben?
  3. Gelten die Ergebnisse von 1. und 2. auch für andere (beliebige) Intervalle [a, b]? Überprüfe dies durch Verändern der Intervallgrenzen sowie der Anzahl n der Rechtecke.
  4. Wie groß müsste n sein, damit kein Unterschied zwischen O, U und der Fläche unter dem Graphen von f mehr zu erwarten wäre?




[Lösung anzeigen]




<<Zurück<<     Home     >>Weiter>>


ghg
Navigation